



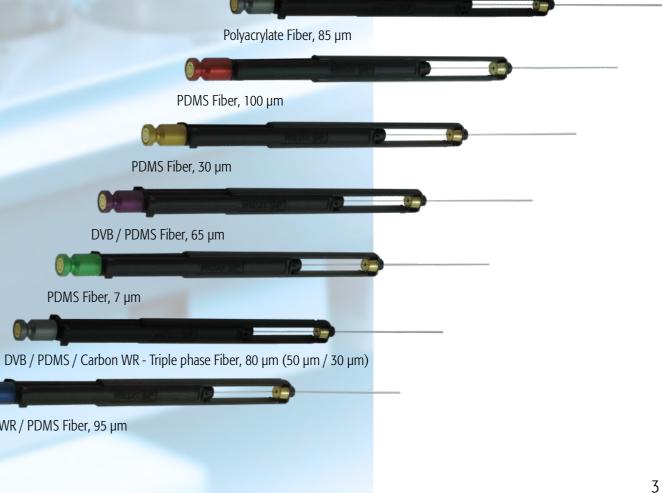
# PAL Smart SPME Fibers Optimized for Automation





## PAL3 Smart SPME Fibers

Each PAL Smart SPME Fiber is equipped with its own read/ write chip with preset parameters, ranges, usage tracking and a unique ID.


### PAL3 Smart SPME Fiber

Since its introduction by Pawliszyn et al. (ref. 1) Solid Phase Micro Extraction (SPME) has seen a tremendous development. It is used for extracting organics from a matrix (solid, liquid or gaseous) into a stationary phase immobilized on a fiber. The analytes are thermally desorbed directly in the injector of a gas chromatograph.

- Color coded for easy identification of coating type and thickness
- Full traceability
- Excellent extraction properties



Find more information about <u>SPME Fibers</u>



Carbon WR / PDMS Fiber, 95 µm



Reference (1): Detection of substituted benzenes in water at the pg/ml level using solid-phase microextraction and gas chromatography-ion trap mass spectrometry. Potter DW, Pawliszyn J., J Chromatogr. 1992 Nov 20;625(2):247-55.

### Comparison of PAL Smart SPME Fibers with established Fibers

The new PAL SPME Fibers (PDMS fibers 7  $\mu$ m, 30  $\mu$ m, and 100  $\mu$ m and the polyacrylate fiber) yield identical results when compared with the corresponding commercial fibers. For medium and high boiling compounds the PAL SPME Carbon WR fiber in certain cases shows an even better performance than the established fibers.

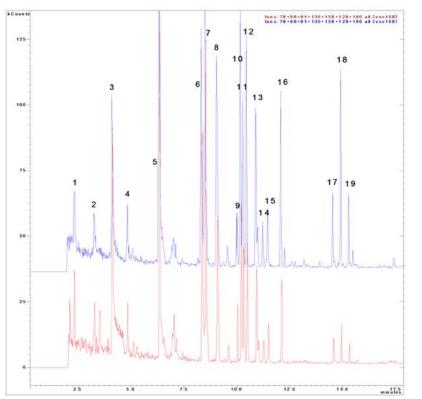



Fig. 1: Comparison of fibers for the analysis of VOCs: PAL SPME Carbon WR fiber 95 µm (blue) and Brand X Carboxen® fiber (red).

## Choose the right Fiber for your Analytes

Typical applications for the SPME technique are:

- Drugs and pharmaceuticals
- Trace Analysis in foodstuffs
- Herbicides / pesticides
- Medical diagnostics
- Water analysis (organics in water)
- Trace impurities in polymers and solid samples
- Solvent residues in raw materials

The type of the fiber corresponds to the polarity and the molecular weight of the analytes:

- For nonpolar samples a PDMS coated fiber should be chosen.
- For low molecular weights or volatile compounds a 100 µm PDMS-coated fiber is usually the best choice.

- Larger molecular weights or semi-volatile compounds are more effectively extracted using a 30  $\mu m$ , or 7  $\mu m$  PDMS-coated fiber.

1 1,1-Dichloroethene

4 Trichloroethylene

3 Benzene

5 Toluene

6 Ethylbenzene

7 m-,p- Xylene 8 o-Xylene

9 Bromobenzene 10 2-Chlorotoluene

4 Chlorotoluene
 tert-Butylbenzene
 1,2,4-Trimethylbenzene

15 sec-Butylbenzene 16 n-Butylbenzene

18 Naphthalene

17 1,2,4-Trichlorobenzene

19 1,2,3-Trichlorobenzene

11 1,3,5-Trimethylbenzene

2 cis-1,2-Dichloroethene

- For an effective extraction of analytes with a very high polarity from polar samples, the 85 µm polyacrylatecoated fiber is the best alternative.
- For trace-level volatiles analysis, use the 95 μm Carbon WR (Carbon Wide Range / PDMS) coated fiber.

Note: The 100  $\mu m$  and 30  $\mu m$  PDMS-coated fibers cannot be used with hexane.

The new Smart Fibers are already premounted in its own holder for immediate use.

- No more manual fiber exchange needed
- Maximum fiber protection

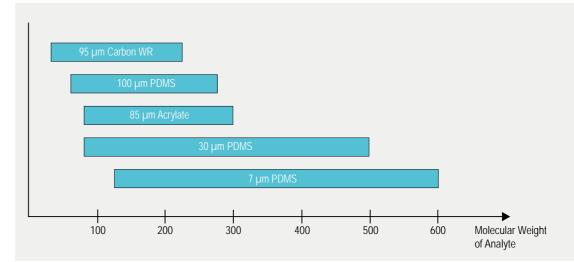



Fig. 2: Correlation between molecular weight of the analyte and the fiber type

| Type of Analyte                           | Molecular<br>Weight | Recomr  |
|-------------------------------------------|---------------------|---------|
| Non-polar high molecular weight compounds | 125 - 600           | 7 µm P  |
| Non-polar semi-volatiles                  | 80 - 500            | 30 µm l |
| Polar semi-volatiles                      | 80 - 300            | 85 µm l |
| Volatiles                                 | 60 - 275            | 100 µm  |
| Gases and low molecular weight compounds  | 30 - 225            | 95 µm ( |

Table 1: Which fiber for which type of analyte?



Fig. 3: Color Code for easy optical identification of coating type and thickness

nmended Fiber

- PDMS (Polydimethylsiloxane)
- PDMS (Polydimethylsiloxane)
- PA (Polyacrylate)
- m PDMS (Polydimethylsiloxane)
- Carbon WR / PDMS (Carbon Wide Range / Polydimethylsiloxane)

| Ana        |        | Low  | Polarity                         | High  |
|------------|--------|------|----------------------------------|-------|
| Prope      | erties | Carb | on WR/PDMS                       |       |
| High       |        | PD   | DVB/PDMS<br>MS 100 µm<br>pon WR/ |       |
| Volatility | D      | PD   | PDMS                             | Tiate |
| TOW        | 1      |      | AS 7 Jum                         |       |

#### PAL Smart SPME Fiber Ordering Information

The PAL Smart SPME Fibers are available in order quantities of one, three or five fibers per box. For method development, a set of each fiber type (set of five) is available.

| No. | Phase Thickness            | Color Code      | Set of 1 Smart Fiber<br>PNo. | Set of 3 Smart Fibers<br>PNo. | Set of 5 Smart Fibers<br>PNo. |
|-----|----------------------------|-----------------|------------------------------|-------------------------------|-------------------------------|
|     | PDMS Smart SPME Fibe       | r (Polydimethy  | lsiloxane)                   |                               |                               |
| 1   | 7 µm                       | Green           | SFIB-P-7/10-P1               | SFIB-P-7/10-P3                | SFIB-P-7/10-P5                |
| 2   | 30 µm                      | Golden          | SFIB-P-30/10-P1              | SFIB-P-30/10-P3               | SFIB-P-30/10-P5               |
| 3   | 100 µm                     | Red             | SFIB-P-100/10-P1             | SFIB-P-100/10-P3              | SFIB-P-100/10-P5              |
|     | Polyacrylate Smart SPM     | E Fiber         |                              |                               |                               |
| 4   | 85 µm                      | Grey            | SFIB-A-85/10-P1              | SFIB-A-85/10-P3               | SFIB-A-85/10-P5               |
|     | Carbon WR / PDMS SPN       | AE Smart Fiber  | (Carbon Wide Range / Poly    | dimethylsiloxane)             |                               |
| 5   | 95 µm                      | Dark Blue       | SFIB-C-WR-95/10-P1           | SFIB-C-WR-95/10-P3            | SFIB-C-WR-95/10-P5            |
|     | DVB / PDMS Smart SPM       | E Fiber (Diviny | lbenzene / Polydimethylsilo  | xane)                         |                               |
| 6   | 65 µm                      | Violet          | SFIB-DVB-65/10-P1            | SFIB-DVB-65/10-P3             | SFIB-DVB-65/10-P5             |
|     | DVB /PDMS/ Carbon W        | R Smart SPME    | Fiber (Divinylbenzene / Pol  | ydimethylsiloxane / Carbor    | n Wide Range)                 |
| 7   | 80 µm (50 µm / 30 µm)      | Dark Grey       | SFIB-DVB/C-WR-80/10-P1       | SFIB-DVB/C-WR-80/10-P3        | SFIB-DVB/C-WR-80/10-P5        |
|     | Smart Fiber Selections for | or method dev   | elopment (set of 5 different | Smart SPME Fiber types)       |                               |
|     | Fiber Selection of Smart S | SFIB-SEL5-S1    |                              |                               |                               |
|     | Fiber Selection of Smart S | SFIB-SEL5-S2    |                              |                               |                               |

Table 2: PAL Smart SPME Fiber Order Information.

All PAL Smart SPME Fibers have a standard length of 10 mm and the core material is Fused Silica.

PAL Smart SPME Fibers can be used for a wide range of GC and injector models and are are fully backward compatible with non smart SPME Fibers any generation of PAL3 Systems.

#### PAL Smart SPME Fiber Accessories

To use the SPME technique with a PAL System a dedicated kit is required, for more information see following table.

An Agitator is highly recommended for temperature controlled extractions. Furthermore the agitation speeds up the equilibration process.

A second optional module is the SPME Arrow Conditioning module, wich can be used for conditioning of SPME Arrows and SPME fibers prior to sample enrichments. The Conditioning module has two functions. The first function is the cleaning (bakeout) of the inserted fiber after the analytical process to prepare for the next analysis. The second function is to condition a new fiber in an inert gas atmosphere. This module is strongly recommended since it will help to protect the GC injection port from contamination and free up the port after thermal desorption.

| Smart SPME Kit<br>PAL3-SPME-SFib-Kit                  | Sma<br>1 pc<br>1 pc<br>1 pc                                                                |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------|
| SPME Arrow Conditioning Module<br>PAL3-SPME-ArrowCond | <ul> <li>Folleni</li> <li>Pol</li> <li>Pol</li> <li>Au</li> <li>Ma</li> <li>rec</li> </ul> |
| Agitator Module<br>PAL3-Agitator                      | • Foi<br>• 6 p<br>• Ter<br>• Ag<br>• Op                                                    |

nart SPME kit, consisting of: bc SPME tool bc SPME Fiber assortment kit (SFIB-SEL5-S2) bc SPME performance evaluation mix

For the conditioning of SPME Arrows and SPME Fibers prior to sample enrichment, max. 350 °C Position for automated conditioning Position for manual pre-conditioning Automated purge gas valve Manual gas valve for pre-conditioning equires firmware version 2.3 or higher

or the incubation and agitation of samples positions for 20 mL vials emperature range 40 - 200 °C vgitation speed 250 - 750 rpm Optional adapters for 2 mL or 10 mL vials





Contact the experts for sample preparation:



Or find your nearest value added reseller.

For more information on PAL System visit:

www.palsystem.com

