

Introduction

- Food samples like sunflower oil need to be analyzed for unwanted compounds.
- Polycyclic aromatic hydrocarbons are cancerogenic compounds from incomplete combustion of organic matter.
- Sample needs to be cleaned-up in a way that enables the injection to a suitable instrument like a gas chromatography mass spectrometer (GC-MS).
- "Clean-up" especially from edible oil and fat samples is complex and labor-intensive.
- For a sample like sunflower oil, all lipids need to be removed before GC-MS injection.
- However, clean-up with established manual methods like SPE is labor intensive and use large amounts of solvents.

The Solution: Automation with µSPE

- Automation is one of the strategies to increase efficiency of the SPE clean-up.
- Automated SPE methods using mini-tubes, so called µSPE have already been successfully implemented for clean-up of QuEChERS extracts used for analysis of pesticides and PCB's.
- The miniaturization of the clean-up step to a microliter scale solid phase extraction (µSPE). The PAH fraction is eluted only in a small volume of few 100 µL for direct injection into GC-HRMS.
- Extraction with large solvent volumes and evaporation with a potential loss of compounds is avoided.

Objective

The objective was to establish an automated µSPE clean-up procedure for PAH analysis in edible oils, here used sunflower oil. We were using two µSPE cartridges with FlorisilTM and C18/Z-SepTM sorbent materials.

We were using the greater concepts of Green Analytical Chemistry and automation.

Automated Clean-up of PAH in Sunflower Oil for GC-MS

Hans-Joachim Hübschmann³, Philipp Eyring¹, Thomi Preiswerk²,, Henrik Lauritz Frandsen¹, Lene Duedahl-Olesen¹ ¹Danish Technical University, Lyngby, Denmark;²CTC Analytics AG, Zwingen, Schweiz, ³CTC Analytics Asia Pte. Ltd., Singapore. Contact:Thomi Preiswerk at: TPreiswerk@ctc.ch

Validation with 24 PAH + 16 IS

- Sample: Sunflower oil, 4 µL direct applied
- Analytes: 24 PAH analyte standard
- Internal Standards: 16 compounds ¹³C labelled PAHs
- 5 replicates were used for precision calculation
- Recovery study at 326 and 3260 µg/kg

Chromatogram and detailed procedure

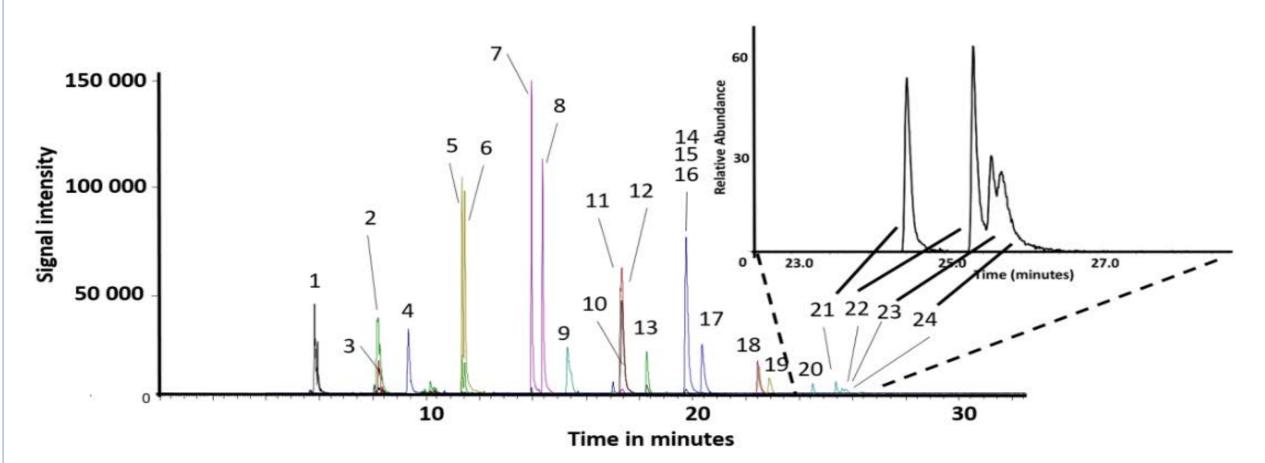
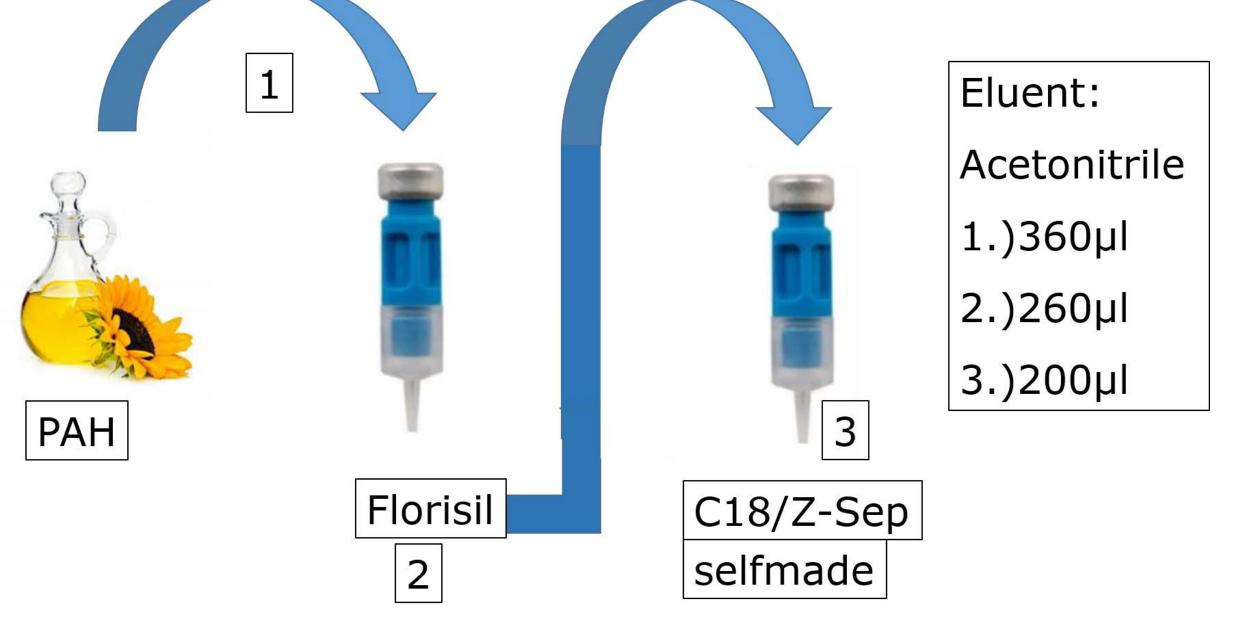



Figure 1 : GC-HRMS ion current (TIC) chromatogram of a sunflower oil eluent after using µSPE clean-up.

Table 1: Results from recovery analysis of sunflower oil spiked at two levels 326 and 3260 µg/kg in five replicates.

# Analyte	Recovery %	%RSD
1 Naphthalene	97	8
2 Acenaphthylene	101	4
3 Acenapthene	107	8
4 Fluorene	102	5
5, 6 Anthracene + Phenanthrene	99	5
7 Fluoranthene	107	5
8 Pyrene	97	5
9 Benzo[c]fluorene	93	5
10, 11 Benz[a]anthracene + Chryser	9 0	6
12 Cyclopenta[cd]pyrene	105	3
13 5-Methylchrysene	98	3
14, 15, 16 Benzo[b+j+k]fluoranthene	115	2
17 Benzo[a]pyrene	104	13
18 Dibenz[a,h]anthracene	96	8
19 Indeno[1,2,3-cd]pyrene	53	14
20 Benzo[g,h,i]perylene	77	22
21 Dibenzo[a,l]pyrene	69	17
22 Dibenzo[a,e]pyrene	72	19

µSPE: The general concept The greater concepts vringe accurately deliv sample and solvents at th lesired volume and flow PAL needle support center SPE cartridge Crimped-on 8 mm septum ensures a closed flow path t the SPE sorbent and facilitat artridge transport leedle guide eliminate: eadspace above the SPE orbent (22 gauge ID) nsertion of the syringe n (type 3) allows delivery of sample and solvents directly t the SPE sorbent Packed chromatographi grade sorbent maximizes eparation efficiency Automation Figure 2: PAL RTC µSPE clean-up configuration Conclusion

Figure 3: Concept of the automated µSPE clean-up steps

Table 2: The automated µSPE clean-up steps

Sequence	Description	Tool
1	Change Tool to 1ml syringe	1ml syringe
2	Wash syringe two times with 1000 μ L acetonitrile	1ml syringe
3	Load 240 μ L of acetone to cartridge 1 (florisil) for conditioning	1ml syringe
4	Drying with air, 1000 μL, cartridge 1	1ml syringe
5	Change Tool to 10 μ L syringe (Injection Tool)	1ml syringe /Injection
6	Wash syringe two times with 10 μ L acetontrile	Injection Tool
	Load 4 μ L of oil sample to the syringe (2 fill strokes prior to avoid	
7	bubbles)	Injection Tool
8	Load extracted fat sample to cartridge 1 (florisil)	Injection Tool
9	Wash injection tool two times with 10 μ L acetonitrile	Injection Tool
10	Change Tool to 1ml syringe	1ml syringe
11	Wash syringe two times with 1000 μ L acetonitrile	1ml syringe
12	Elute cartridge to vial 1 with 360 μ L acetonitrile	1ml syringe
13	Wash syringe two times with 1000 μ L acetonitrile	1ml syringe
14	Load 240 μ L of Acetone Condition of cartridge 2	1ml syringe
15	Drying cartridge 2 with 1000 μL air	1ml syringe
17	Load/Eluate 260 μ L of eluate 1 to cartridge 2 above vial 2	1ml syringe
18	Wash syringe two times with 500 μ L acetonitrile	1ml syringe

Green Analytical Chemistry

- Fully green analytical method.
- New micro-SPE method developed
- Vegetable oil sample could be directly applied and cleaned-up
- Evaporation steps are avoided
- PAH could be analyzed with good recoveries
- Potential for high sensitivity to meet the regulated maximum level (sum of 4 PAH) with 10 µg/kg
- Optimize load volume as next step to perform
- Large volume injections allow increased sensitivity

Presented at

EuSP2022/GSAC2022 e-conferences, 14-16 March, 2022.

References

alentina Bertoz, Giorgia Purcaro, et al., A Review on the Occurrence and Analytical Determination of PAHs in Olive Oils., Foods 2021, 10(2), 324; https://doi.org/10.3390/foods10020324.

Bruce D. Morris and Richard B. Schriner, Development of an Automated Column Solid-Phase Extraction Cleanup of QuEChERS Extracts, Using a Zirconia-Based Sorbent, for Pesticide Residue Analyses by LC-MS/MS, J. Agric. Food Chem. 2015, 63, 5107–5119, DOI: 10.1021/jf505539e.

Steven J. Lehotay, Lijun Han, Yelena Sapozhnikova, Automated Mini-Column Solid-Phase Extraction Cleanup for High-Throughput Analysis of Chemical Contaminants in Foods by Low-Pressure Gas Chromatography-Tandem Mass Spectrometry, published with open access at Springerlink.com, Chromatographia (2016) DOI 10.1007/s10337-016-3116-y.

Eyring P, Preiswerk T, Frandsen HL, Duedahl-Olesen L (2020) Automated micro-solid-phase extraction clean-up of polycyclic aromatic hydrocarbons in food oils for analysis by gas chromatography – orbital ion trap mass spectrometry. J Sep Sci 1–9. https://doi.org/10.1002/jssc.202000720

Registered names, trademarks, etc. used, even when not marked as such, are not to be considered unprotected by law.