Markets Overview

Markets

Find Solutions for your Daily Analytical Challenges

You will find proven workflows to increase your process safety, agility, efficiency, and productivity. A number of workflows are provided with the PAL System or are available as comprehensive solutions with tailored configurations. Analytical parameters can always be customized.

environmental analysis

Environmental

Protection of our environment and natural resources is key. Water, our most precious food, is also our most and most thoroughly controlled food.

The PAL System provides the tools and workflows for automated analysis of large sample series, even the continuous online sampling from water streams.

More
food & food safety analysis

Food & Food Safety

The PAL System as the industry standard front-end for GC/MS and LC/MS offers proven automated sample preparation solutions

The PAL workflows for food and feed analysis follow the internationally published standard methods, often micromethods are applied for a safer green analytical chemistry.

More
chemical analysis

Chemical

Automation minimizes the variability in sample handling. PAL Systems excel in particular in the handling of difficult matrices like viscous or hazardous media.

The PAL System delivers proven and reliable workflows with high precision liquid handling for unattended 24/7 operation requirements.

More
clinical analysis

Clinical

Pharmaceutical and forensic analytical chemistry often deals with biological samples, typically with challenging, complex matrices in sample preparation.

PAL Systems deliver proven workflows for the automated analysis of the active pharmaceutical ingredients, illicit drugs, toxic compounds, and also residue analysis.

More
life science analysis

Life Science

Automated applications in life sciences such as proteomics studies, cancer and biomarker studies are of special interest and define a cutting-edge area of analytical chemistry in research, clinical applications and the pharmaceutical industries.

Typical are the large sample series from cohorts of patients requiring highly reproducible processing, a particular strength of the PAL System

More

FAQs

All openAll close

LC/MS Multiplexing is a powerful strategy to maximize the productivity of a mass spectrometer. By connecting a single MS to two or more LC systems, the PAL System can manage staggered injections so that the MS is constantly analyzing samples instead of waiting for a column to finish its run and equilibrate. This approach can double or even triple your sample throughput without the cost of an additional mass spectrometer.

While static headspace analysis samples a fixed equilibrium volume of gas, Dynamic Headspace (DHS) is an exhaustive extraction technique that provides superior enrichment for trace-level analysis. The automated In-Tube Extraction (ITEX) process involves:

  1. Purging & Trapping: The sample is heated while an inert gas repeatedly purges the headspace. This gas flow carries the volatile compounds through a microtrap filled with a specific adsorbent material, which captures and concentrates the target analytes.

  2. Thermal Desorption: The trap is then rapidly heated, releasing the concentrated analytes as a sharp band into the GC/MS for analysis. This dynamic process allows for much lower detection limits, making it the ideal technique for demanding applications like trace VOCs analysis in environmental samples or the analysis of additives in plastics.

Solid phase microextraction (SPME) is a solvent-free technique where a fiber coated with an extraction phase is used to isolate analytes. The PAL System automates SPME in two primary modes:

  • Headspace SPME: The fiber is exposed to the vapor phase above a liquid or solid sample, making it ideal for the analysis of volatile and semi-volatile organic compounds (VOCs analysis).

  • Immersion SPME: The fiber is dipped directly into a liquid sample to extract less volatile or non-volatile analytes.

While traditional SPME fibers are effective, the newer, more robust SPME Arrow offers superior performance. Its unique design combines a much larger surface area and volume of extraction phase with a robust metal core and piercing head, resulting in higher sensitivity, faster extractions, and a significantly longer lifetime. Learn more about the PAL System's SPME capabilities.

µSPE, or Micro SPE, is a miniaturized and automated Solid Phase Extraction technique that operates in two primary modes for highly efficient sample preparation:

  • Pass-Through Cleanup: In this mode, the sample extract is passed through the cartridge. The sorbent is chosen to retain matrix interferences while allowing the analytes of interest to pass through for collection and analysis. This is a common approach for cleaning up complex extracts, such as in QuEChERS workflows.

  • Bind-and-Elute (Enrichment): Here, the sorbent is selected to bind and retain the target analytes while the sample matrix is washed away. The purified analytes are then eluted using a small volume of a different solvent. This mode is ideal for analyte enrichment and fractionation.

The versatility of µSPE, determined by the cartridge chemistry, enables a wide range of applications, from general cleanup to targeted analysis like PFAS analysis using weak anion exchange (WAX) cartridges, or fractionation in metabolomics analysis. Key advantages are minimized solvent use, cleaner extracts without sample dilution, and improved data quality, leading to higher instrument uptime.

All openAll close

The PAL System is an essential tool for high-throughput life science research.

  • For Proteomics analysis: It automates labor-intensive and error-prone steps such as protein digestion, post-digestion peptide cleanup (e.g., µSPE), and precise injection into the LC/MS, ensuring the high degree of reproducibility required for comparative studies.

  • For Metabolomics analysis: It provides robust automation of extraction procedures (e.g., Bligh & Dyer for polar and non-polar metabolites), derivatization for GC/MS analysis, and highly precise injections, which are critical for detecting subtle metabolic changes between sample groups.

The PAL System provides robust, automated workflows for the analysis of various hydrocarbon contaminants:

  • For PAH analysis: In complex matrices for environmental and food safety applications, the system automates the necessary extraction, cleanup (e.g., µSPE), and injection steps. This ensures the high recovery and reproducibility critical for reliable PAH testing at trace levels.

  • For MOSH/MOAH analysis: The determination of Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH) is a significant challenge, particularly in food analysis. The PAL System automates the complex sample preparation, including online LC-GC coupling, to effectively fractionate the two classes and remove interferences. This high level of automation provides the reproducibility needed for reliable quantification.

Yes, the PAL System excels at the automated sample preparation for FAME. It automates the entire transesterification process for Fatty Acid Methyl Esters, including the precise addition of reagents for saponification and methylation, liquid-liquid extraction, and final injection into the GC. This not only improves the reproducibility and throughput of FAME analysis but also enhances lab safety by minimizing manual handling of hazardous reagents like BF3-methanol during FAME derivatization.

The PAL System provides a complete, automated solution for trace-level PFAS analysis, addressing the critical challenge of background contamination. To ensure the lowest detection limits, a dedicated range of PFAS-free consumables (syringes, tubing, vials) is available. The system's flexibility allows it to automate a variety of extraction and cleanup techniques, including online SPE, Micro SPE (µSPE), and SPME. This versatility enables reliable and reproducible results across a wide range of matrices such as food, food contact materials, and environmental samples. The PAL System is capable of automating complex, regulated workflows like EPA 1633, making it an ideal platform for applications like testing PFAS in drinking water.

Contact LinkedIn